If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-35=0
a = 5; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·5·(-35)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*5}=\frac{0-10\sqrt{7}}{10} =-\frac{10\sqrt{7}}{10} =-\sqrt{7} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*5}=\frac{0+10\sqrt{7}}{10} =\frac{10\sqrt{7}}{10} =\sqrt{7} $
| -4x-20=-32 | | 20=30x+36=28x | | 11n-11=88 | | 4(z-2)+2=10 | | 26u=286 | | x/5x4=6 | | 10j=620 | | 28=2x+x+1+2x+2 | | 0.1=(9+5x) | | k/7=-16 | | 575=25r | | 3q=675 | | 3x+19=105 | | -8w-5w+7w=72 | | 28=2x+x+1=2x+2 | | 3x-7=8+-2x | | m/27=21 | | 1920=60(x) | | 1/2(m+5)=5 | | 10z+20=13 | | d/11=23 | | 8g-3+35=180 | | 6(2m+3)-4m=-14 | | 10z+4=13 | | 6(f-2)=-18 | | f+30=180 | | 3(s+2)=36 | | 27=r/28 | | 3x+5=-25+1x | | -97=3+10y | | 15p=825 | | (f+30)+72=180 |